
The C Preprocessor

Last revised July 1992
for GCC version 2

Richard M. Stallman

This booklet is eventually intended to form the first chapter of a GNU C Language manual.

Copyright c© 1987, 1989, 1991, 1992 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions

for verbatim copying, provided also that the entire resulting derived work is distributed under the

terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modified versions.

Chapter 1: The C Preprocessor 1

1 The C Preprocessor

The C preprocessor is a macro processor that is used automatically by the C compiler to

transform your program before actual compilation. It is called a macro processor because it allows

you to define macros, which are brief abbreviations for longer constructs.

The C preprocessor provides four separate facilities that you can use as you see fit:

• Inclusion of header files. These are files of declarations that can be substituted into your

program.

• Macro expansion. You can define macros, which are abbreviations for arbitrary fragments of

C code, and then the C preprocessor will replace the macros with their definitions throughout

the program.

• Conditional compilation. Using special preprocessor commands, you can include or exclude

parts of the program according to various conditions.

• Line control. If you use a program to combine or rearrange source files into an intermediate file

which is then compiled, you can use line control to inform the compiler of where each source

line originally came from.

C preprocessors vary in some details. This manual discusses the GNU C preprocessor, the C

Compatible Compiler Preprocessor. The GNU C preprocessor provides a superset of the features

of ANSI Standard C.

ANSI Standard C requires the rejection of many harmless constructs commonly used by today’s

C programs. Such incompatibility would be inconvenient for users, so the GNU C preprocessor is

configured to accept these constructs by default. Strictly speaking, to get ANSI Standard C, you

must use the options ‘-trigraphs’, ‘-undef’ and ‘-pedantic’, but in practice the consequences

of having strict ANSI Standard C make it undesirable to do this. See Section 1.10 [Invocation],

page 43.

1.1 Transformations Made Globally

Most C preprocessor features are inactive unless you give specific commands to request their

use. (Preprocessor commands are lines starting with ‘#’; see Section 1.2 [Commands], page 3). But

there are three transformations that the preprocessor always makes on all the input it receives,

even in the absence of commands.

2 The C Preprocessor

• All C comments are replaced with single spaces.

• Backslash-Newline sequences are deleted, no matter where. This feature allows you to break

long lines for cosmetic purposes without changing their meaning.

• Predefined macro names are replaced with their expansions (see Section 1.5.3 [Predefined],

page 14).

The first two transformations are done before nearly all other parsing and before preprocessor

commands are recognized. Thus, for example, you can split a line cosmetically with Backslash-

Newline anywhere (except when trigraphs are in use; see below).

/*
/ # /
*/ defi\
ne FO\
O 10\
20

is equivalent into ‘#define FOO 1020’. You can split even an escape sequence with Backslash-

Newline. For example, you can split "foo\bar" between the ‘\’ and the ‘b’ to get

"foo\\
bar"

This behavior is unclean: in all other contexts, a Backslash can be inserted in a string constant as

an ordinary character by writing a double Backslash, and this creates an exception. But the ANSI

C standard requires it. (Strict ANSI C does not allow Newlines in string constants, so they do not

consider this a problem.)

But there are a few exceptions to all three transformations.

• C comments and predefined macro names are not recognized inside a ‘#include’ command in

which the file name is delimited with ‘<’ and ‘>’.

• C comments and predefined macro names are never recognized within a character or string

constant. (Strictly speaking, this is the rule, not an exception, but it is worth noting here

anyway.)

Chapter 1: The C Preprocessor 3

• Backslash-Newline may not safely be used within an ANSI “trigraph”. Trigraphs are converted

before Backslash-Newline is deleted. If you write what looks like a trigraph with a Backslash-

Newline inside, the Backslash-Newline is deleted as usual, but it is then too late to recognize

the trigraph.

This exception is relevant only if you use the ‘-trigraphs’ option to enable trigraph processing.

See Section 1.10 [Invocation], page 43.

1.2 Preprocessor Commands

Most preprocessor features are active only if you use preprocessor commands to request their

use.

Preprocessor commands are lines in your program that start with ‘#’. The ‘#’ is followed by

an identifier that is the command name. For example, ‘#define’ is the command that defines a

macro. Whitespace is also allowed before and after the ‘#’.

The set of valid command names is fixed. Programs cannot define new preprocessor commands.

Some command names require arguments; these make up the rest of the command line and must

be separated from the command name by whitespace. For example, ‘#define’ must be followed by

a macro name and the intended expansion of the macro.

A preprocessor command cannot be more than one line in normal circumstances. It may be split

cosmetically with Backslash-Newline, but that has no effect on its meaning. Comments containing

Newlines can also divide the command into multiple lines, but the comments are changed to Spaces

before the command is interpreted. The only way a significant Newline can occur in a preprocessor

command is within a string constant or character constant. Note that most C compilers that

might be applied to the output from the preprocessor do not accept string or character constants

containing Newlines.

The ‘#’ and the command name cannot come from a macro expansion. For example, if ‘foo’ is

defined as a macro expanding to ‘define’, that does not make ‘#foo’ a valid preprocessor command.

4 The C Preprocessor

1.3 Header Files

A header file is a file containing C declarations and macro definitions (see Section 1.5 [Macros],

page 9) to be shared between several source files. You request the use of a header file in your

program with the C preprocessor command ‘#include’.

1.3.1 Uses of Header Files

Header files serve two kinds of purposes.

• System header files declare the interfaces to parts of the operating system. You include them

in your program to supply the definitions and declarations you need to invoke system calls and

libraries.

• Your own header files contain declarations for interfaces between the source files of your pro-

gram. Each time you have a group of related declarations and macro definitions all or most

of which are needed in several different source files, it is a good idea to create a header file for

them.

Including a header file produces the same results in C compilation as copying the header file into

each source file that needs it. But such copying would be time-consuming and error-prone. With

a header file, the related declarations appear in only one place. If they need to be changed, they

can be changed in one place, and programs that include the header file will automatically use the

new version when next recompiled. The header file eliminates the labor of finding and changing all

the copies as well as the risk that a failure to find one copy will result in inconsistencies within a

program.

The usual convention is to give header files names that end with ‘.h’.

1.3.2 The ‘#include’ Command

Both user and system header files are included using the preprocessor command ‘#include’. It

has three variants:

Chapter 1: The C Preprocessor 5

#include <file>

This variant is used for system header files. It searches for a file named file in a list of

directories specified by you, then in a standard list of system directories. You specify

directories to search for header files with the command option ‘-I’ (see Section 1.10

[Invocation], page 43). The option ‘-nostdinc’ inhibits searching the standard system

directories; in this case only the directories you specify are searched.

The parsing of this form of ‘#include’ is slightly special because comments are not

recognized within the ‘<. . .>’. Thus, in ‘#include <x/*y>’ the ‘/*’ does not start a

comment and the command specifies inclusion of a system header file named ‘x/*y’.

Of course, a header file with such a name is unlikely to exist on Unix, where shell

wildcard features would make it hard to manipulate.

The argument file may not contain a ‘>’ character. It may, however, contain a ‘<’

character.

#include "file"

This variant is used for header files of your own program. It searches for a file named

file first in the current directory, then in the same directories used for system header

files. The current directory is the directory of the current input file. It is tried first

because it is presumed to be the location of the files that the current input file refers to.

(If the ‘-I-’ option is used, the special treatment of the current directory is inhibited.)

The argument file may not contain ‘"’ characters. If backslashes occur within file, they

are considered ordinary text characters, not escape characters. None of the character

escape sequences appropriate to string constants in C are processed. Thus, ‘#include

"x\n\\y"’ specifies a filename containing three backslashes. It is not clear why this

behavior is ever useful, but the ANSI standard specifies it.

#include anything else

This variant is called a computed #include. Any ‘#include’ command whose argument

does not fit the above two forms is a computed include. The text anything else is

checked for macro calls, which are expanded (see Section 1.5 [Macros], page 9). When

this is done, the result must fit one of the above two variants—in particular, the

expanded text must in the end be surrounded by either quotes or angle braces.

This feature allows you to define a macro which controls the file name to be used at

a later point in the program. One application of this is to allow a site-configuration

file for your program to specify the names of the system include files to be used. This

can help in porting the program to various operating systems in which the necessary

system header files are found in different places.

6 The C Preprocessor

1.3.3 How ‘#include’ Works

The ‘#include’ command works by directing the C preprocessor to scan the specified file as

input before continuing with the rest of the current file. The output from the preprocessor contains

the output already generated, followed by the output resulting from the included file, followed by

the output that comes from the text after the ‘#include’ command. For example, given two files

as follows:

/* File program.c */
int x;
#include "header.h"

main ()
{
printf (test ());

}

/* File header.h */
char *test ();

the output generated by the C preprocessor for ‘program.c’ as input would be

int x;
char *test ();

main ()
{
printf (test ());

}

Included files are not limited to declarations and macro definitions; those are merely the typical

uses. Any fragment of a C program can be included from another file. The include file could

even contain the beginning of a statement that is concluded in the containing file, or the end of

a statement that was started in the including file. However, a comment or a string or character

constant may not start in the included file and finish in the including file. An unterminated

comment, string constant or character constant in an included file is considered to end (with an

error message) at the end of the file.

Chapter 1: The C Preprocessor 7

The line following the ‘#include’ command is always treated as a separate line by the C pre-

processor even if the included file lacks a final newline.

1.3.4 Once-Only Include Files

Very often, one header file includes another. It can easily result that a certain header file is

included more than once. This may lead to errors, if the header file defines structure types or

typedefs, and is certainly wasteful. Therefore, we often wish to prevent multiple inclusion of a

header file.

The standard way to do this is to enclose the entire real contents of the file in a conditional, like

this:

#ifndef __FILE_FOO_SEEN__
#define __FILE_FOO_SEEN__

the entire file

#endif /* __FILE_FOO_SEEN__ */

The macro __FILE_FOO_SEEN__ indicates that the file has been included once already; its name

should begin with ‘__’ to avoid conflicts with user programs, and it should contain the name of the

file and some additional text, to avoid conflicts with other header files.

The GNU C preprocessor is programmed to notice when a header file uses this particular con-

struct and handle it efficiently. If a header file is contained entirely in a ‘#ifndef’ conditional,

then it records that fact. If a subsequent ‘#include’ specifies the same file, and the macro in the

‘#ifndef’ is already defined, then the file is entirely skipped, without even reading it.

There is also an explicit command to tell the preprocessor that it need not include a file more

than once. This is called ‘#pragma once’, and was used in addition to the ‘#ifndef’ conditional

around the contents of the header file. ‘#pragma once’ is now obsolete and should not be used at

all.

In the Objective C language, there is a variant of ‘#include’ called ‘#import’ which includes a

file, but does so at most once. If you use ‘#import’ instead of ‘#include’, then you don’t need the

conditionals inside the header file to prevent multiple execution of the contents.

8 The C Preprocessor

‘#import’ is obsolete because it is not a well-designed feature. It requires the users of a header

file—the applications programmers—to know that a certain header file should only be included

once. It is much better for the header file’s implementor to write the file so that users don’t need

to know this. Using ‘#ifndef’ accomplishes this goal.

1.4 Inheritance and Header Files

Inheritance is what happens when one object or file derives some of its contents by virtual

copying from another object or file. In the case of C header files, inheritance means that one

header file includes another header file and then replaces or adds something.

If the inheriting header file and the base header file have different names, then inheritance is

straightforward: simply write ‘#include "base"’ in the inheriting file.

Sometimes it is necessary to give the inheriting file the same name as the base file. This is less

straightforward.

For example, suppose an application program uses the system header file ‘sys/signal.h’, but

the version of ‘/usr/include/sys/signal.h’ on a particular system doesn’t do what the applica-

tion program expects. It might be convenient to define a “local” version, perhaps under the name

‘/usr/local/include/sys/signal.h’, to override or add to the one supplied by the system.

You can do this by using the option ‘-I.’ for compilation, and writing a file ‘sys/signal.h’

that does what the application program expects. But making this file include the standard

‘sys/signal.h’ is not so easy—writing ‘#include <sys/signal.h>’ in that file doesn’t work, be-

cause it includes your own version of the file, not the standard system version. Used in that file

itself, this leads to an infinite recursion and a fatal error in compilation.

‘#include </usr/include/sys/signal.h>’ would find the proper file, but that is not clean,

since it makes an assumption about where the system header file is found. This is bad for mainte-

nance, since it means that any change in where the system’s header files are kept requires a change

somewhere else.

The clean way to solve this problem is to use ‘#include_next’, which means, “Include the next

file with this name.” This command works like ‘#include’ except in searching for the specified file:

it starts searching the list of header file directories after the directory in which the current file was

found.

Chapter 1: The C Preprocessor 9

Suppose you specify ‘-I /usr/local/include’, and the list of directories to search also in-

cludes ‘/usr/include’; and suppose that both directories contain a file named ‘sys/signal.h’.

Ordinary ‘#include <sys/signal.h>’ finds the file under ‘/usr/local/include’. If that file con-

tains ‘#include_next <sys/signal.h>’, it starts searching after that directory, and finds the file

in ‘/usr/include’.

1.5 Macros

A macro is a sort of abbreviation which you can define once and then use later. There are many

complicated features associated with macros in the C preprocessor.

1.5.1 Simple Macros

A simple macro is a kind of abbreviation. It is a name which stands for a fragment of code.

Some people refer to these as manifest constants.

Before you can use a macro, you must define it explicitly with the ‘#define’ command. ‘#define’

is followed by the name of the macro and then the code it should be an abbreviation for. For

example,

#define BUFFER_SIZE 1020

defines a macro named ‘BUFFER_SIZE’ as an abbreviation for the text ‘1020’. Therefore, if some-

where after this ‘#define’ command there comes a C statement of the form

foo = (char *) xmalloc (BUFFER_SIZE);

then the C preprocessor will recognize and expand the macro ‘BUFFER_SIZE’, resulting in

foo = (char *) xmalloc (1020);

the definition must be a single line; however, it may not end in the middle of a multi-line string

constant or character constant.

10 The C Preprocessor

The use of all upper case for macro names is a standard convention. Programs are easier to

read when it is possible to tell at a glance which names are macros.

Normally, a macro definition must be a single line, like all C preprocessor commands. (You

can split a long macro definition cosmetically with Backslash-Newline.) There is one exception:

Newlines can be included in the macro definition if within a string or character constant. By the

same token, it is not possible for a macro definition to contain an unbalanced quote character; the

definition automatically extends to include the matching quote character that ends the string or

character constant. Comments within a macro definition may contain Newlines, which make no

difference since the comments are entirely replaced with Spaces regardless of their contents.

Aside from the above, there is no restriction on what can go in a macro body. Parentheses need

not balance. The body need not resemble valid C code. (Of course, you might get error messages

from the C compiler when you use the macro.)

The C preprocessor scans your program sequentially, so macro definitions take effect at the place

you write them. Therefore, the following input to the C preprocessor

foo = X;
#define X 4
bar = X;

produces as output

foo = X;

bar = 4;

After the preprocessor expands a macro name, the macro’s definition body is appended to the

front of the remaining input, and the check for macro calls continues. Therefore, the macro body

can contain calls to other macros. For example, after

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE

Chapter 1: The C Preprocessor 11

the name ‘TABLESIZE’ when used in the program would go through two stages of expansion, resulting

ultimately in ‘1020’.

This is not at all the same as defining ‘TABLESIZE’ to be ‘1020’. The ‘#define’ for ‘TABLESIZE’

uses exactly the body you specify—in this case, ‘BUFSIZE’—and does not check to see whether it

too is the name of a macro. It’s only when you use ‘TABLESIZE’ that the result of its expansion is

checked for more macro names. See Section 1.5.8.7 [Cascaded Macros], page 31.

1.5.2 Macros with Arguments

A simple macro always stands for exactly the same text, each time it is used. Macros can be

more flexible when they accept arguments. Arguments are fragments of code that you supply each

time the macro is used. These fragments are included in the expansion of the macro according to

the directions in the macro definition.

To define a macro that uses arguments, you write a ‘#define’ command with a list of argument

names in parentheses after the name of the macro. The argument names may be any valid C

identifiers, separated by commas and optionally whitespace. The open-parenthesis must follow the

macro name immediately, with no space in between.

For example, here is a macro that computes the minimum of two numeric values, as it is defined

in many C programs:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

(This is not the best way to define a “minimum” macro in GNU C. See Section 1.5.8.4 [Side Effects],

page 25, for more information.)

To use a macro that expects arguments, you write the name of the macro followed by a list

of actual arguments in parentheses. separated by commas. The number of actual arguments you

give must match the number of arguments the macro expects. Examples of use of the macro ‘min’

include ‘min (1, 2)’ and ‘min (x + 28, *p)’.

The expansion text of the macro depends on the arguments you use. Each of the argument

names of the macro is replaced, throughout the macro definition, with the corresponding actual

argument. Using the same macro ‘min’ defined above, ‘min (1, 2)’ expands into

12 The C Preprocessor

((1) < (2) ? (1) : (2))

where ‘1’ has been substituted for ‘X’ and ‘2’ for ‘Y’.

Likewise, ‘min (x + 28, *p)’ expands into

((x + 28) < (*p) ? (x + 28) : (*p))

Parentheses in the actual arguments must balance; a comma within parentheses does not end

an argument. However, there is no requirement for brackets or braces to balance, and they do not

prevent a comma from separating arguments. Thus,

macro (array[x = y, x + 1])

passes two arguments to macro: ‘array[x = y’ and ‘x + 1]’. If you want to supply ‘array[x = y,

x + 1]’ as an argument, you must write it as ‘array[(x = y, x + 1)]’, which is equivalent C code.

After the actual arguments are substituted into the macro body, the entire result is appended

to the front of the remaining input, and the check for macro calls continues. Therefore, the actual

arguments can contain calls to other macros, either with or without arguments, or even to the same

macro. The macro body can also contain calls to other macros. For example, ‘min (min (a, b),

c)’ expands into this text:

((((a) < (b) ? (a) : (b))) < (c)
? (((a) < (b) ? (a) : (b)))
: (c))

(Line breaks shown here for clarity would not actually be generated.)

If a macro foo takes one argument, and you want to supply an empty argument, you must write

at least some whitespace between the parentheses, like this: ‘foo ()’. Just ‘foo ()’ is providing

no arguments, which is an error if foo expects an argument. But ‘foo0 ()’ is the correct way to

call a macro defined to take zero arguments, like this:

Chapter 1: The C Preprocessor 13

#define foo0() . . .

If you use the macro name followed by something other than an open-parenthesis (after ignoring

any spaces, tabs and comments that follow), it is not a call to the macro, and the preprocessor does

not change what you have written. Therefore, it is possible for the same name to be a variable or

function in your program as well as a macro, and you can choose in each instance whether to refer

to the macro (if an actual argument list follows) or the variable or function (if an argument list

does not follow).

Such dual use of one name could be confusing and should be avoided except when the two

meanings are effectively synonymous: that is, when the name is both a macro and a function and

the two have similar effects. You can think of the name simply as a function; use of the name

for purposes other than calling it (such as, to take the address) will refer to the function, while

calls will expand the macro and generate better but equivalent code. For example, you can use

a function named ‘min’ in the same source file that defines the macro. If you write ‘&min’ with

no argument list, you refer to the function. If you write ‘min (x, bb)’, with an argument list,

the macro is expanded. If you write ‘(min) (a, bb)’, where the name ‘min’ is not followed by an

open-parenthesis, the macro is not expanded, so you wind up with a call to the function ‘min’.

You may not define the same name as both a simple macro and a macro with arguments.

In the definition of a macro with arguments, the list of argument names must follow the macro

name immediately with no space in between. If there is a space after the macro name, the macro is

defined as taking no arguments, and all the rest of the line is taken to be the expansion. The reason

for this is that it is often useful to define a macro that takes no arguments and whose definition

begins with an identifier in parentheses. This rule about spaces makes it possible for you to do

either this:

#define FOO(x) - 1 / (x)

(which defines ‘FOO’ to take an argument and expand into minus the reciprocal of that argument)

or this:

#define BAR (x) - 1 / (x)

14 The C Preprocessor

(which defines ‘BAR’ to take no argument and always expand into ‘(x) - 1 / (x)’).

Note that the uses of a macro with arguments can have spaces before the left parenthesis; it’s

the definition where it matters whether there is a space.

1.5.3 Predefined Macros

Several simple macros are predefined. You can use them without giving definitions for them.

They fall into two classes: standard macros and system-specific macros.

1.5.3.1 Standard Predefined Macros

The standard predefined macros are available with the same meanings regardless of the machine

or operating system on which you are using GNU C. Their names all start and end with double

underscores. Those preceding __GNUC__ in this table are standardized by ANSI C; the rest are

GNU C extensions.

__FILE__ This macro expands to the name of the current input file, in the form of a C string

constant. The precise name returned is the one that was specified in ‘#include’ or as

the input file name argument.

__LINE__ This macro expands to the current input line number, in the form of a decimal integer

constant. While we call it a predefined macro, it’s a pretty strange macro, since its

“definition” changes with each new line of source code.

This and ‘__FILE__’ are useful in generating an error message to report an inconsis-

tency detected by the program; the message can state the source line at which the

inconsistency was detected. For example,

fprintf (stderr, "Internal error: "
"negative string length "

"%d at %s, line %d.",
length, __FILE__, __LINE__);

A ‘#include’ command changes the expansions of ‘__FILE__’ and ‘__LINE__’ to cor-

respond to the included file. At the end of that file, when processing resumes on the

input file that contained the ‘#include’ command, the expansions of ‘__FILE__’ and

‘__LINE__’ revert to the values they had before the ‘#include’ (but ‘__LINE__’ is then

incremented by one as processing moves to the line after the ‘#include’).

The expansions of both ‘__FILE__’ and ‘__LINE__’ are altered if a ‘#line’ command

is used. See Section 1.7 [Combining Sources], page 40.

Chapter 1: The C Preprocessor 15

__INCLUDE_LEVEL__

This macro expands to a decimal integer constant that represents the depth of nesting

in include files. The value of this macro is incremented on every ‘#include’ command

and decremented at every end of file.

__DATE__ This macro expands to a string constant that describes the date on which the prepro-

cessor is being run. The string constant contains eleven characters and looks like ‘"Jan

29 1987"’ or ‘"Apr 1 1905"’.

__TIME__ This macro expands to a string constant that describes the time at which the pre-

processor is being run. The string constant contains eight characters and looks like

‘"23:59:01"’.

__STDC__ This macro expands to the constant 1, to signify that this is ANSI Standard C.

(Whether that is actually true depends on what C compiler will operate on the output

from the preprocessor.)

__GNUC__ This macro is defined if and only if this is GNU C. This macro is defined only when the

entire GNU C compiler is in use; if you invoke the preprocessor directly, ‘__GNUC__’ is

undefined.

__STRICT_ANSI__

This macro is defined if and only if the ‘-ansi’ switch was specified when GNU C

was invoked. Its definition is the null string. This macro exists primarily to direct

certain GNU header files not to define certain traditional Unix constructs which are

incompatible with ANSI C.

__BASE_FILE__

This macro expands to the name of the main input file, in the form of a C string

constant. This is the source file that was specified as an argument when the C compiler

was invoked.

__VERSION__

This macro expands to a string which describes the version number of GNU C. The

string is normally a sequence of decimal numbers separated by periods, such as ‘"1.18"’.

The only reasonable use of this macro is to incorporate it into a string constant.

__OPTIMIZE__

This macro is defined in optimizing compilations. It causes certain GNU header files

to define alternative macro definitions for some system library functions. It is unwise

to refer to or test the definition of this macro unless you make very sure that programs

will execute with the same effect regardless.

__CHAR_UNSIGNED__

This macro is defined if and only if the data type char is unsigned on the target

machine. It exists to cause the standard header file ‘limit.h’ to work correctly. It

is bad practice to refer to this macro yourself; instead, refer to the standard macros

16 The C Preprocessor

defined in ‘limit.h’. The preprocessor uses this macro to determine whether or not

to sign-extend large character constants written in octal; see Section 1.6.2.1 [The ‘#if’

Command], page 33.

1.5.3.2 Nonstandard Predefined Macros

The C preprocessor normally has several predefined macros that vary between machines because

their purpose is to indicate what type of system and machine is in use. This manual, being for

all systems and machines, cannot tell you exactly what their names are; instead, we offer a list of

some typical ones. You can use ‘cpp -dM’ to see the values of predefined macros; see Section 1.10

[Invocation], page 43.

Some nonstandard predefined macros describe the operating system in use, with more or less

specificity. For example,

unix ‘unix’ is normally predefined on all Unix systems.

BSD ‘BSD’ is predefined on recent versions of Berkeley Unix (perhaps only in version 4.3).

Other nonstandard predefined macros describe the kind of CPU, with more or less specificity.

For example,

vax ‘vax’ is predefined on Vax computers.

mc68000 ‘mc68000’ is predefined on most computers whose CPU is a Motorola 68000, 68010 or

68020.

m68k ‘m68k’ is also predefined on most computers whose CPU is a 68000, 68010 or 68020;

however, some makers use ‘mc68000’ and some use ‘m68k’. Some predefine both names.

What happens in GNU C depends on the system you are using it on.

M68020 ‘M68020’ has been observed to be predefined on some systems that use 68020 CPUs—in

addition to ‘mc68000’ and ‘m68k’, which are less specific.

_AM29K

_AM29000 Both ‘_AM29K’ and ‘_AM29000’ are predefined for the AMD 29000 CPU family.

ns32000 ‘ns32000’ is predefined on computers which use the National Semiconductor 32000

series CPU.

Yet other nonstandard predefined macros describe the manufacturer of the system. For example,

Chapter 1: The C Preprocessor 17

sun ‘sun’ is predefined on all models of Sun computers.

pyr ‘pyr’ is predefined on all models of Pyramid computers.

sequent ‘sequent’ is predefined on all models of Sequent computers.

These predefined symbols are not only nonstandard, they are contrary to the ANSI standard

because their names do not start with underscores. Therefore, the option ‘-ansi’ inhibits the

definition of these symbols.

This tends to make ‘-ansi’ useless, since many programs depend on the customary nonstandard

predefined symbols. Even system header files check them and will generate incorrect declarations

if they do not find the names that are expected. You might think that the header files supplied for

the Uglix computer would not need to test what machine they are running on, because they can

simply assume it is the Uglix; but often they do, and they do so using the customary names. As a

result, very few C programs will compile with ‘-ansi’. We intend to avoid such problems on the

GNU system.

What, then, should you do in an ANSI C program to test the type of machine it will run on?

GNU C offers a parallel series of symbols for this purpose, whose names are made from the

customary ones by adding ‘__’ at the beginning and end. Thus, the symbol __vax__ would be

available on a Vax, and so on.

The set of nonstandard predefined names in the GNU C preprocessor is controlled (when cpp is

itself compiled) by the macro ‘CPP_PREDEFINES’, which should be a string containing ‘-D’ options,

separated by spaces. For example, on the Sun 3, we use the following definition:

#define CPP_PREDEFINES "-Dmc68000 -Dsun -Dunix -Dm68k"

This macro is usually specified in ‘tm.h’.

1.5.4 Stringification

Stringification means turning a code fragment into a string constant whose contents are the text

for the code fragment. For example, stringifying ‘foo (z)’ results in ‘"foo (z)"’.

18 The C Preprocessor

In the C preprocessor, stringification is an option available when macro arguments are substi-

tuted into the macro definition. In the body of the definition, when an argument name appears, the

character ‘#’ before the name specifies stringification of the corresponding actual argument when

it is substituted at that point in the definition. The same argument may be substituted in other

places in the definition without stringification if the argument name appears in those places with

no ‘#’.

Here is an example of a macro definition that uses stringification:

#define WARN_IF(EXP) \
do { if (EXP) \

fprintf (stderr, "Warning: " #EXP "\n"); } \
while (0)

Here the actual argument for ‘EXP’ is substituted once as given, into the ‘if’ statement, and once

as stringified, into the argument to ‘fprintf’. The ‘do’ and ‘while (0)’ are a kludge to make it

possible to write ‘WARN_IF (arg);’, which the resemblance of ‘WARN_IF’ to a function would make

C programmers want to do; see Section 1.5.8.3 [Swallow Semicolon], page 24).

The stringification feature is limited to transforming one macro argument into one string con-

stant: there is no way to combine the argument with other text and then stringify it all together.

But the example above shows how an equivalent result can be obtained in ANSI Standard C using

the feature that adjacent string constants are concatenated as one string constant. The preprocessor

stringifies the actual value of ‘EXP’ into a separate string constant, resulting in text like

do { if (x == 0) \
fprintf (stderr, "Warning: " "x == 0" "\n"); } \

while (0)

but the C compiler then sees three consecutive string constants and concatenates them into one,

producing effectively

do { if (x == 0) \
fprintf (stderr, "Warning: x == 0\n"); } \

while (0)

Chapter 1: The C Preprocessor 19

Stringification in C involves more than putting doublequote characters around the fragment;

it is necessary to put backslashes in front of all doublequote characters, and all backslashes in

string and character constants, in order to get a valid C string constant with the proper contents.

Thus, stringifying ‘p = "foo\n";’ results in ‘"p = \"foo\\n\";"’. However, backslashes that are

not inside of string or character constants are not duplicated: ‘\n’ by itself stringifies to ‘"\n"’.

Whitespace (including comments) in the text being stringified is handled according to precise

rules. All leading and trailing whitespace is ignored. Any sequence of whitespace in the middle of

the text is converted to a single space in the stringified result.

1.5.5 Concatenation

Concatenation means joining two strings into one. In the context of macro expansion, concate-

nation refers to joining two lexical units into one longer one. Specifically, an actual argument to the

macro can be concatenated with another actual argument or with fixed text to produce a longer

name. The longer name might be the name of a function, variable or type, or a C keyword; it might

even be the name of another macro, in which case it will be expanded.

When you define a macro, you request concatenation with the special operator ‘##’ in the macro

body. When the macro is called, after actual arguments are substituted, all ‘##’ operators are

deleted, and so is any whitespace next to them (including whitespace that was part of an actual

argument). The result is to concatenate the syntactic tokens on either side of the ‘##’.

Consider a C program that interprets named commands. There probably needs to be a table of

commands, perhaps an array of structures declared as follows:

struct command
{
char *name;
void (*function) ();

};

struct command commands[] =
{
{ "quit", quit_command},
{ "help", help_command},
. . .

};

20 The C Preprocessor

It would be cleaner not to have to give each command name twice, once in the string constant

and once in the function name. A macro which takes the name of a command as an argument can

make this unnecessary. The string constant can be created with stringification, and the function

name by concatenating the argument with ‘_command’. Here is how it is done:

#define COMMAND(NAME) { #NAME, NAME ## _command }

struct command commands[] =
{
COMMAND (quit),
COMMAND (help),
. . .

};

The usual case of concatenation is concatenating two names (or a name and a number) into a

longer name. But this isn’t the only valid case. It is also possible to concatenate two numbers

(or a number and a name, such as ‘1.5’ and ‘e3’) into a number. Also, multi-character operators

such as ‘+=’ can be formed by concatenation. In some cases it is even possible to piece together a

string constant. However, two pieces of text that don’t together form a valid lexical unit cannot

be concatenated. For example, concatenation with ‘x’ on one side and ‘+’ on the other is not

meaningful because those two characters can’t fit together in any lexical unit of C. The ANSI

standard says that such attempts at concatenation are undefined, but in the GNU C preprocessor

it is well defined: it puts the ‘x’ and ‘+’ side by side with no particular special results.

Keep in mind that the C preprocessor converts comments to whitespace before macros are even

considered. Therefore, you cannot create a comment by concatenating ‘/’ and ‘*’: the ‘/*’ sequence

that starts a comment is not a lexical unit, but rather the beginning of a “long” space character.

Also, you can freely use comments next to a ‘##’ in a macro definition, or in actual arguments

that will be concatenated, because the comments will be converted to spaces at first sight, and

concatenation will later discard the spaces.

1.5.6 Undefining Macros

To undefine a macro means to cancel its definition. This is done with the ‘#undef’ command.

‘#undef’ is followed by the macro name to be undefined.

Like definition, undefinition occurs at a specific point in the source file, and it applies starting

from that point. The name ceases to be a macro name, and from that point on it is treated by the

preprocessor as if it had never been a macro name.

Chapter 1: The C Preprocessor 21

For example,

#define FOO 4
x = FOO;
#undef FOO
x = FOO;

expands into

x = 4;

x = FOO;

In this example, ‘FOO’ had better be a variable or function as well as (temporarily) a macro, in

order for the result of the expansion to be valid C code.

The same form of ‘#undef’ command will cancel definitions with arguments or definitions that

don’t expect arguments. The ‘#undef’ command has no effect when used on a name not currently

defined as a macro.

1.5.7 Redefining Macros

Redefining a macro means defining (with ‘#define’) a name that is already defined as a macro.

A redefinition is trivial if the new definition is transparently identical to the old one. You

probably wouldn’t deliberately write a trivial redefinition, but they can happen automatically

when a header file is included more than once (see Section 1.3 [Header Files], page 4), so they are

accepted silently and without effect.

Nontrivial redefinition is considered likely to be an error, so it provokes a warning message

from the preprocessor. However, sometimes it is useful to change the definition of a macro in

mid-compilation. You can inhibit the warning by undefining the macro with ‘#undef’ before the

second definition.

In order for a redefinition to be trivial, the new definition must exactly match the one already

in effect, with two possible exceptions:

22 The C Preprocessor

• Whitespace may be added or deleted at the beginning or the end.

• Whitespace may be changed in the middle (but not inside strings). However, it may not be

eliminated entirely, and it may not be added where there was no whitespace at all.

Recall that a comment counts as whitespace.

1.5.8 Pitfalls and Subtleties of Macros

In this section we describe some special rules that apply to macros and macro expansion, and

point out certain cases in which the rules have counterintuitive consequences that you must watch

out for.

1.5.8.1 Improperly Nested Constructs

Recall that when a macro is called with arguments, the arguments are substituted into the

macro body and the result is checked, together with the rest of the input file, for more macro calls.

It is possible to piece together a macro call coming partially from the macro body and partially

from the actual arguments. For example,

#define double(x) (2*(x))
#define call_with_1(x) x(1)

would expand ‘call_with_1 (double)’ into ‘(2*(1))’.

Macro definitions do not have to have balanced parentheses. By writing an unbalanced open

parenthesis in a macro body, it is possible to create a macro call that begins inside the macro body

but ends outside of it. For example,

#define strange(file) fprintf (file, "%s %d",
. . .

strange(stderr) p, 35)

Chapter 1: The C Preprocessor 23

This bizarre example expands to ‘fprintf (stderr, "%s %d", p, 35)’!

1.5.8.2 Unintended Grouping of Arithmetic

You may have noticed that in most of the macro definition examples shown above, each occur-

rence of a macro argument name had parentheses around it. In addition, another pair of parentheses

usually surround the entire macro definition. Here is why it is best to write macros that way.

Suppose you define a macro as follows,

#define ceil_div(x, y) (x + y - 1) / y

whose purpose is to divide, rounding up. (One use for this operation is to compute how many ‘int’

objects are needed to hold a certain number of ‘char’ objects.) Then suppose it is used as follows:

a = ceil_div (b & c, sizeof (int));

This expands into

a = (b & c + sizeof (int) - 1) / sizeof (int);

which does not do what is intended. The operator-precedence rules of C make it equivalent to this:

a = (b & (c + sizeof (int) - 1)) / sizeof (int);

But what we want is this:

a = ((b & c) + sizeof (int) - 1)) / sizeof (int);

Defining the macro as

24 The C Preprocessor

#define ceil_div(x, y) ((x) + (y) - 1) / (y)

provides the desired result.

However, unintended grouping can result in another way. Consider ‘sizeof ceil_div(1, 2)’.

That has the appearance of a C expression that would compute the size of the type of ‘ceil_div

(1, 2)’, but in fact it means something very different. Here is what it expands to:

sizeof ((1) + (2) - 1) / (2)

This would take the size of an integer and divide it by two. The precedence rules have put the

division outside the ‘sizeof’ when it was intended to be inside.

Parentheses around the entire macro definition can prevent such problems. Here, then, is the

recommended way to define ‘ceil_div’:

#define ceil_div(x, y) (((x) + (y) - 1) / (y))

1.5.8.3 Swallowing the Semicolon

Often it is desirable to define a macro that expands into a compound statement. Consider, for

example, the following macro, that advances a pointer (the argument ‘p’ says where to find it)

across whitespace characters:

#define SKIP_SPACES (p, limit) \
{ register char *lim = (limit); \
while (p != lim) { \

if (*p++ != ’ ’) { \
p--; break; }}}

Here Backslash-Newline is used to split the macro definition, which must be a single line, so that

it resembles the way such C code would be laid out if not part of a macro definition.

A call to this macro might be ‘SKIP_SPACES (p, lim)’. Strictly speaking, the call expands to a

compound statement, which is a complete statement with no need for a semicolon to end it. But

Chapter 1: The C Preprocessor 25

it looks like a function call. So it minimizes confusion if you can use it like a function call, writing

a semicolon afterward, as in ‘SKIP_SPACES (p, lim);’

But this can cause trouble before ‘else’ statements, because the semicolon is actually a null

statement. Suppose you write

if (*p != 0)
SKIP_SPACES (p, lim);

else . . .

The presence of two statements—the compound statement and a null statement—in between the

‘if’ condition and the ‘else’ makes invalid C code.

The definition of the macro ‘SKIP_SPACES’ can be altered to solve this problem, using a ‘do . . .

while’ statement. Here is how:

#define SKIP_SPACES (p, limit) \
do { register char *lim = (limit); \

while (p != lim) { \
if (*p++ != ’ ’) { \

p--; break; }}} \
while (0)

Now ‘SKIP_SPACES (p, lim);’ expands into

do {. . .} while (0);

which is one statement.

1.5.8.4 Duplication of Side Effects

Many C programs define a macro ‘min’, for “minimum”, like this:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

26 The C Preprocessor

When you use this macro with an argument containing a side effect, as shown here,

next = min (x + y, foo (z));

it expands as follows:

next = ((x + y) < (foo (z)) ? (x + y) : (foo (z)));

where ‘x + y’ has been substituted for ‘X’ and ‘foo (z)’ for ‘Y’.

The function ‘foo’ is used only once in the statement as it appears in the program, but the

expression ‘foo (z)’ has been substituted twice into the macro expansion. As a result, ‘foo’ might

be called two times when the statement is executed. If it has side effects or if it takes a long time

to compute, the results might not be what you intended. We say that ‘min’ is an unsafe macro.

The best solution to this problem is to define ‘min’ in a way that computes the value of ‘foo

(z)’ only once. The C language offers no standard way to do this, but it can be done with GNU

C extensions as follows:

#define min(X, Y) \
({ typeof (X) __x = (X), __y = (Y); \

(__x < __y) ? __x : __y; })

If you do not wish to use GNU C extensions, the only solution is to be careful when using the

macro ‘min’. For example, you can calculate the value of ‘foo (z)’, save it in a variable, and use

that variable in ‘min’:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))
. . .

{
int tem = foo (z);
next = min (x + y, tem);

}

(where we assume that ‘foo’ returns type ‘int’).

Chapter 1: The C Preprocessor 27

1.5.8.5 Self-Referential Macros

A self-referential macro is one whose name appears in its definition. A special feature of ANSI

Standard C is that the self-reference is not considered a macro call. It is passed into the preprocessor

output unchanged.

Let’s consider an example:

#define foo (4 + foo)

where ‘foo’ is also a variable in your program.

Following the ordinary rules, each reference to ‘foo’ will expand into ‘(4 + foo)’; then this will

be rescanned and will expand into ‘(4 + (4 + foo))’; and so on until it causes a fatal error (memory

full) in the preprocessor.

However, the special rule about self-reference cuts this process short after one step, at ‘(4 +

foo)’. Therefore, this macro definition has the possibly useful effect of causing the program to add

4 to the value of ‘foo’ wherever ‘foo’ is referred to.

In most cases, it is a bad idea to take advantage of this feature. A person reading the program

who sees that ‘foo’ is a variable will not expect that it is a macro as well. The reader will come

across the identifier ‘foo’ in the program and think its value should be that of the variable ‘foo’,

whereas in fact the value is four greater.

The special rule for self-reference applies also to indirect self-reference. This is the case where a

macro x expands to use a macro ‘y’, and the expansion of ‘y’ refers to the macro ‘x’. The resulting

reference to ‘x’ comes indirectly from the expansion of ‘x’, so it is a self-reference and is not further

expanded. Thus, after

#define x (4 + y)
#define y (2 * x)

‘x’ would expand into ‘(4 + (2 * x))’. Clear?

28 The C Preprocessor

But suppose ‘y’ is used elsewhere, not from the definition of ‘x’. Then the use of ‘x’ in the

expansion of ‘y’ is not a self-reference because ‘x’ is not “in progress”. So it does expand. However,

the expansion of ‘x’ contains a reference to ‘y’, and that is an indirect self-reference now because

‘y’ is “in progress”. The result is that ‘y’ expands to ‘(2 * (4 + y))’.

It is not clear that this behavior would ever be useful, but it is specified by the ANSI C standard,

so you may need to understand it.

1.5.8.6 Separate Expansion of Macro Arguments

We have explained that the expansion of a macro, including the substituted actual arguments,

is scanned over again for macro calls to be expanded.

What really happens is more subtle: first each actual argument text is scanned separately for

macro calls. Then the results of this are substituted into the macro body to produce the macro

expansion, and the macro expansion is scanned again for macros to expand.

The result is that the actual arguments are scanned twice to expand macro calls in them.

Most of the time, this has no effect. If the actual argument contained any macro calls, they are

expanded during the first scan. The result therefore contains no macro calls, so the second scan

does not change it. If the actual argument were substituted as given, with no prescan, the single

remaining scan would find the same macro calls and produce the same results.

You might expect the double scan to change the results when a self-referential macro is used

in an actual argument of another macro (see Section 1.5.8.5 [Self-Reference], page 27): the self-

referential macro would be expanded once in the first scan, and a second time in the second scan.

But this is not what happens. The self-references that do not expand in the first scan are marked

so that they will not expand in the second scan either.

The prescan is not done when an argument is stringified or concatenated. Thus,

#define str(s) #s
#define foo 4
str (foo)

expands to ‘"foo"’. Once more, prescan has been prevented from having any noticeable effect.

Chapter 1: The C Preprocessor 29

More precisely, stringification and concatenation use the argument as written, in un-prescanned

form. The same actual argument would be used in prescanned form if it is substituted elsewhere

without stringification or concatenation.

#define str(s) #s lose(s)
#define foo 4
str (foo)

expands to ‘"foo" lose(4)’.

You might now ask, “Why mention the prescan, if it makes no difference? And why not skip it

and make the preprocessor faster?” The answer is that the prescan does make a difference in three

special cases:

• Nested calls to a macro.

• Macros that call other macros that stringify or concatenate.

• Macros whose expansions contain unshielded commas.

We say that nested calls to a macro occur when a macro’s actual argument contains a call to

that very macro. For example, if ‘f’ is a macro that expects one argument, ‘f (f (1))’ is a nested

pair of calls to ‘f’. The desired expansion is made by expanding ‘f (1)’ and substituting that into

the definition of ‘f’. The prescan causes the expected result to happen. Without the prescan, ‘f

(1)’ itself would be substituted as an actual argument, and the inner use of ‘f’ would appear during

the main scan as an indirect self-reference and would not be expanded. Here, the prescan cancels

an undesirable side effect (in the medical, not computational, sense of the term) of the special rule

for self-referential macros.

But prescan causes trouble in certain other cases of nested macro calls. Here is an example:

#define foo a,b
#define bar(x) lose(x)
#define lose(x) (1 + (x))

bar(foo)

30 The C Preprocessor

We would like ‘bar(foo)’ to turn into ‘(1 + (foo))’, which would then turn into ‘(1 + (a,b))’.

But instead, ‘bar(foo)’ expands into ‘lose(a,b)’, and you get an error because lose requires a

single argument. In this case, the problem is easily solved by the same parentheses that ought to

be used to prevent misnesting of arithmetic operations:

#define foo (a,b)
#define bar(x) lose((x))

The problem is more serious when the operands of the macro are not expressions; for example,

when they are statements. Then parentheses are unacceptable because they would make for invalid

C code:

#define foo { int a, b; . . . }

In GNU C you can shield the commas using the ‘({. . .})’ construct which turns a compound

statement into an expression:

#define foo ({ int a, b; . . . })

Or you can rewrite the macro definition to avoid such commas:

#define foo { int a; int b; . . . }

There is also one case where prescan is useful. It is possible to use prescan to expand an

argument and then stringify it—if you use two levels of macros. Let’s add a new macro ‘xstr’ to

the example shown above:

#define xstr(s) str(s)
#define str(s) #s
#define foo 4
xstr (foo)

Chapter 1: The C Preprocessor 31

This expands into ‘"4"’, not ‘"foo"’. The reason for the difference is that the argument of

‘xstr’ is expanded at prescan (because ‘xstr’ does not specify stringification or concatenation of

the argument). The result of prescan then forms the actual argument for ‘str’. ‘str’ uses its

argument without prescan because it performs stringification; but it cannot prevent or undo the

prescanning already done by ‘xstr’.

1.5.8.7 Cascaded Use of Macros

A cascade of macros is when one macro’s body contains a reference to another macro. This is

very common practice. For example,

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE

This is not at all the same as defining ‘TABLESIZE’ to be ‘1020’. The ‘#define’ for ‘TABLESIZE’

uses exactly the body you specify—in this case, ‘BUFSIZE’—and does not check to see whether it

too is the name of a macro.

It’s only when you use ‘TABLESIZE’ that the result of its expansion is checked for more macro

names.

This makes a difference if you change the definition of ‘BUFSIZE’ at some point in the source

file. ‘TABLESIZE’, defined as shown, will always expand using the definition of ‘BUFSIZE’ that is

currently in effect:

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE
#undef BUFSIZE
#define BUFSIZE 37

Now ‘TABLESIZE’ expands (in two stages) to ‘37’.

32 The C Preprocessor

1.5.9 Newlines in Macro Arguments

Traditional macro processing carries forward all newlines in macro arguments into the expansion

of the macro. This means that, if some of the arguments are substituted more than once, or not

at all, or out of order, newlines can be duplicated, lost, or moved around within the expansion. If

the expansion consists of multiple statements, then the effect is to distort the line numbers of some

of these statements. The result can be incorrect line numbers, in error messages or displayed in a

debugger.

The GNU C preprocessor operating in ANSI C mode adjusts appropriately for multiple use of

an argument—the first use expands all the newlines, and subsequent uses of the same argument

produce no newlines. But even in this mode, it can produce incorrect line numbering if arguments

are used out of order, or not used at all.

Here is an example illustrating this problem:

#define ignore_second_arg(a,b,c) a; c

ignore_second_arg (foo (),
ignored (),
syntax error);

The syntax error triggered by the tokens ‘syntax error’ results in an error message citing line

four, even though the statement text comes from line five.

1.6 Conditionals

In a macro processor, a conditional is a command that allows a part of the program to be ignored

during compilation, on some conditions. In the C preprocessor, a conditional can test either an

arithmetic expression or whether a name is defined as a macro.

A conditional in the C preprocessor resembles in some ways an ‘if’ statement in C, but it is

important to understand the difference between them. The condition in an ‘if’ statement is tested

during the execution of your program. Its purpose is to allow your program to behave differently

from run to run, depending on the data it is operating on. The condition in a preprocessor

conditional command is tested when your program is compiled. Its purpose is to allow different

code to be included in the program depending on the situation at the time of compilation.

Chapter 1: The C Preprocessor 33

1.6.1 Why Conditionals are Used

Generally there are three kinds of reason to use a conditional.

• A program may need to use different code depending on the machine or operating system it

is to run on. In some cases the code for one operating system may be erroneous on another

operating system; for example, it might refer to library routines that do not exist on the other

system. When this happens, it is not enough to avoid executing the invalid code: merely having

it in the program makes it impossible to link the program and run it. With a preprocessor

conditional, the offending code can be effectively excised from the program when it is not valid.

• You may want to be able to compile the same source file into two different programs. Sometimes

the difference between the programs is that one makes frequent time-consuming consistency

checks on its intermediate data while the other does not.

• A conditional whose condition is always false is a good way to exclude code from the program

but keep it as a sort of comment for future reference.

Most simple programs that are intended to run on only one machine will not need to use

preprocessor conditionals.

1.6.2 Syntax of Conditionals

A conditional in the C preprocessor begins with a conditional command: ‘#if’, ‘#ifdef’ or

‘#ifndef’. See Section 1.6.4 [Conditionals-Macros], page 36, for information on ‘#ifdef’ and

‘#ifndef’; only ‘#if’ is explained here.

1.6.2.1 The ‘#if’ Command

The ‘#if’ command in its simplest form consists of

#if expression
controlled text
#endif /* expression */

The comment following the ‘#endif’ is not required, but it is a good practice because it helps

people match the ‘#endif’ to the corresponding ‘#if’. Such comments should always be used,

34 The C Preprocessor

except in short conditionals that are not nested. In fact, you can put anything at all after the

‘#endif’ and it will be ignored by the GNU C preprocessor, but only comments are acceptable in

ANSI Standard C.

expression is a C expression of integer type, subject to stringent restrictions. It may contain

• Integer constants, which are all regarded as long or unsigned long.

• Character constants, which are interpreted according to the character set and conventions of the

machine and operating system on which the preprocessor is running. The GNU C preprocessor

uses the C data type ‘char’ for these character constants; therefore, whether some character

codes are negative is determined by the C compiler used to compile the preprocessor. If it

treats ‘char’ as signed, then character codes large enough to set the sign bit will be considered

negative; otherwise, no character code is considered negative.

• Arithmetic operators for addition, subtraction, multiplication, division, bitwise operations,

shifts, comparisons, and ‘&&’ and ‘||’.

• Identifiers that are not macros, which are all treated as zero(!).

• Macro calls. All macro calls in the expression are expanded before actual computation of the

expression’s value begins.

Note that ‘sizeof’ operators and enum-type values are not allowed. enum-type values, like all

other identifiers that are not taken as macro calls and expanded, are treated as zero.

The controlled text inside of a conditional can include preprocessor commands. Then the com-

mands inside the conditional are obeyed only if that branch of the conditional succeeds. The

text can also contain other conditional groups. However, the ‘#if’ and ‘#endif’ commands must

balance.

1.6.2.2 The ‘#else’ Command

The ‘#else’ command can be added to a conditional to provide alternative text to be used if

the condition is false. This is what it looks like:

#if expression
text-if-true
#else /* Not expression */
text-if-false
#endif /* Not expression */

Chapter 1: The C Preprocessor 35

If expression is nonzero, and thus the text-if-true is active, then ‘#else’ acts like a failing

conditional and the text-if-false is ignored. Contrariwise, if the ‘#if’ conditional fails, the text-if-

false is considered included.

1.6.2.3 The ‘#elif’ Command

One common case of nested conditionals is used to check for more than two possible alternatives.

For example, you might have

#if X == 1
. . .

#else /* X != 1 */
#if X == 2
. . .

#else /* X != 2 */
. . .

#endif /* X != 2 */
#endif /* X != 1 */

Another conditional command, ‘#elif’, allows this to be abbreviated as follows:

#if X == 1
. . .

#elif X == 2
. . .

#else /* X != 2 and X != 1*/
. . .

#endif /* X != 2 and X != 1*/

‘#elif’ stands for “else if”. Like ‘#else’, it goes in the middle of a ‘#if’-‘#endif’ pair and

subdivides it; it does not require a matching ‘#endif’ of its own. Like ‘#if’, the ‘#elif’ command

includes an expression to be tested.

The text following the ‘#elif’ is processed only if the original ‘#if’-condition failed and the

‘#elif’ condition succeeds. More than one ‘#elif’ can go in the same ‘#if’-‘#endif’ group. Then

the text after each ‘#elif’ is processed only if the ‘#elif’ condition succeeds after the original

‘#if’ and any previous ‘#elif’ commands within it have failed. ‘#else’ is equivalent to ‘#elif 1’,

and ‘#else’ is allowed after any number of ‘#elif’ commands, but ‘#elif’ may not follow ‘#else’.

36 The C Preprocessor

1.6.3 Keeping Deleted Code for Future Reference

If you replace or delete a part of the program but want to keep the old code around as a comment

for future reference, the easy way to do this is to put ‘#if 0’ before it and ‘#endif’ after it.

This works even if the code being turned off contains conditionals, but they must be entire

conditionals (balanced ‘#if’ and ‘#endif’).

1.6.4 Conditionals and Macros

Conditionals are useful in connection with macros or assertions, because those are the only

ways that an expression’s value can vary from one compilaton to another. A ‘#if’ command

whose expression uses no macros or assertions is equivalent to ‘#if 1’ or ‘#if 0’; you might as

well determine which one, by computing the value of the expression yourself, and then simplify the

program.

For example, here is a conditional that tests the expression ‘BUFSIZE == 1020’, where ‘BUFSIZE’

must be a macro.

#if BUFSIZE == 1020
printf ("Large buffers!\n");

#endif /* BUFSIZE is large */

(Programmers often wish they could test the size of a variable or data type in ‘#if’, but this

does not work. The preprocessor does not understand sizeof, or typedef names, or even the type

keywords such as int.)

The special operator ‘defined’ is used in ‘#if’ expressions to test whether a certain name is

defined as a macro. Either ‘defined name’ or ‘defined (name)’ is an expression whose value is 1

if name is defined as macro at the current point in the program, and 0 otherwise. For the ‘defined’

operator it makes no difference what the definition of the macro is; all that matters is whether there

is a definition. Thus, for example,

#if defined (vax) || defined (ns16000)

Chapter 1: The C Preprocessor 37

would include the following code if either of the names ‘vax’ and ‘ns16000’ is defined as a macro.

You can test the same condition using assertions (see Section 1.6.5 [Assertions], page 38), like this:

#if #cpu (vax) || #cpu (ns16000)

If a macro is defined and later undefined with ‘#undef’, subsequent use of the ‘defined’ operator

returns 0, because the name is no longer defined. If the macro is defined again with another

‘#define’, ‘defined’ will recommence returning 1.

Conditionals that test just the definedness of one name are very common, so there are two

special short conditional commands for this case.

#ifdef name

is equivalent to ‘#if defined (name)’.

#ifndef name

is equivalent to ‘#if ! defined (name)’.

Macro definitions can vary between compilations for several reasons.

• Some macros are predefined on each kind of machine. For example, on a Vax, the name ‘vax’

is a predefined macro. On other machines, it would not be defined.

• Many more macros are defined by system header files. Different systems and machines define

different macros, or give them different values. It is useful to test these macros with conditionals

to avoid using a system feature on a machine where it is not implemented.

• Macros are a common way of allowing users to customize a program for different machines or

applications. For example, the macro ‘BUFSIZE’ might be defined in a configuration file for

your program that is included as a header file in each source file. You would use ‘BUFSIZE’

in a preprocessor conditional in order to generate different code depending on the chosen

configuration.

• Macros can be defined or undefined with ‘-D’ and ‘-U’ command options when you compile

the program. You can arrange to compile the same source file into two different programs

by choosing a macro name to specify which program you want, writing conditionals to test

whether or how this macro is defined, and then controlling the state of the macro with compiler

command options. See Section 1.10 [Invocation], page 43.

38 The C Preprocessor

1.6.5 Assertions

Assertions are a more systematic alternative to macros in writing conditionals to test what sort

of computer or system the compiled program will run on. Assertions are usually predefined, but

you can define them with preprocessor commands or command-line options.

The macros traditionally used to describe the type of target are not classified in any way ac-

cording to which question they answer; they may indicate a hardware architecture, a particular

hardware model, an operating system, a particular version of an operating system, or specific con-

figuration options. These are jumbled together in a single namespace. In contrast, each assertion

consists of a named question and an answer. The question is usually called the predicate. An

assertion looks like this:

#predicate (answer)

You must use a properly formed identifier for predicate. The value of answer can be any sequence

of words; all characters are significant except for leading and trailing whitespace, and differences

in internal whitespace sequences are ignored. Thus, ‘x + y’ is different from ‘x+y’ but equivalent to

‘x + y’. ‘)’ is not allowed in an answer.

Here is a conditional to test whether the answer answer is asserted for the predicate predicate:

#if #predicate (answer)

There may be more than one answer asserted for a given predicate. If you omit the answer, you

can test whether any answer is asserted for predicate:

#if #predicate

Most of the time, the assertions you test will be predefined assertions. GNU C provides three

predefined predicates: system, cpu, and machine. system is for assertions about the type of

software, cpu describes the type of computer architecture, and machine gives more information

about the computer. For example, on a GNU system, the following assertions would be true:

#system (gnu)

Chapter 1: The C Preprocessor 39

#system (mach)
#system (mach 3)
#system (mach 3.subversion)
#system (hurd)
#system (hurd version)

and perhaps others. On a Unix system, you would find #system (unix) and either #system (unix

bsd) or #system (unix sysv), with possible version numbers following. The alternatives with more

or less version information let you ask more or less detailed questions about the type of system

software.

Portability note: Many Unix C compilers provide only one answer for the system assertion:

#system (unix), if they support assertions at all. This is less than useful.

An assertion with a multi-word answer is completely different from several assertions with indi-

vidual single-word answers. For example, the presence of system (mach 3.0) does not mean that

system (3.0) is true. It also does not directly imply system (mach), but in GNU C, that last will

normally be asserted as well.

You can create assertions within a C program using ‘#assert’, like this:

#assert predicate (answer)

(Note the absence of a ‘#’ before predicate.)

Each time you do this, you assert a new true answer for predicate. Asserting one answer does not

invalidate previously asserted answers; they all remain true. The only way to remove an assertion

is with ‘#unassert’. ‘#unassert’ has the same syntax as ‘#assert’. You can also remove all

assertions about predicate like this:

#unassert predicate

You can also add or cancel assertions using command options when you run gcc or cpp. See

Section 1.10 [Invocation], page 43.

40 The C Preprocessor

1.6.6 The ‘#error’ and ‘#warning’ Commands

The command ‘#error’ causes the preprocessor to report a fatal error. The rest of the line that

follows ‘#error’ is used as the error message.

You would use ‘#error’ inside of a conditional that detects a combination of parameters which

you know the program does not properly support. For example, if you know that the program will

not run properly on a Vax, you might write

#ifdef vax
#error Won’t work on Vaxen. See comments at get_last_object.
#endif

See Section 1.5.3.2 [Nonstandard Predefined], page 16, for why this works.

If you have several configuration parameters that must be set up by the installation in a con-

sistent way, you can use conditionals to detect an inconsistency and report it with ‘#error’. For

example,

#if HASH_TABLE_SIZE % 2 == 0 || HASH_TABLE_SIZE % 3 == 0 \
|| HASH_TABLE_SIZE % 5 == 0

#error HASH_TABLE_SIZE should not be divisible by a small prime
#endif

The command ‘#warning’ is like the command ‘#error’, but causes the preprocessor to issue

a warning and continue preprocessing. The rest of the line that follows ‘#warning’ is used as the

warning message.

You might use ‘#warning’ in obsolete header files, with a message directing the user to the

header file which should be used instead.

1.7 Combining Source Files

One of the jobs of the C preprocessor is to inform the C compiler of where each line of C code

came from: which source file and which line number.

Chapter 1: The C Preprocessor 41

C code can come from multiple source files if you use ‘#include’; both ‘#include’ and the use

of conditionals and macros can cause the line number of a line in the preprocessor output to be

different from the line’s number in the original source file. You will appreciate the value of making

both the C compiler (in error messages) and symbolic debuggers such as GDB use the line numbers

in your source file.

The C preprocessor builds on this feature by offering a command by which you can control the

feature explicitly. This is useful when a file for input to the C preprocessor is the output from

another program such as the bison parser generator, which operates on another file that is the

true source file. Parts of the output from bison are generated from scratch, other parts come

from a standard parser file. The rest are copied nearly verbatim from the source file, but their

line numbers in the bison output are not the same as their original line numbers. Naturally you

would like compiler error messages and symbolic debuggers to know the original source file and line

number of each line in the bison input.

bison arranges this by writing ‘#line’ commands into the output file. ‘#line’ is a command

that specifies the original line number and source file name for subsequent input in the current

preprocessor input file. ‘#line’ has three variants:

#line linenum

Here linenum is a decimal integer constant. This specifies that the line number of the

following line of input, in its original source file, was linenum.

#line linenum filename

Here linenum is a decimal integer constant and filename is a string constant. This

specifies that the following line of input came originally from source file filename and

its line number there was linenum. Keep in mind that filename is not just a file name;

it is surrounded by doublequote characters so that it looks like a string constant.

#line anything else

anything else is checked for macro calls, which are expanded. The result should be a

decimal integer constant followed optionally by a string constant, as described above.

‘#line’ commands alter the results of the ‘__FILE__’ and ‘__LINE__’ predefined macros from

that point on. See Section 1.5.3.1 [Standard Predefined], page 14.

The output of the preprocessor (which is the input for the rest of the compiler) contains com-

mands that look much like ‘#line’ commands. They start with just ‘#’ instead of ‘#line’, but this

is followed by a line number and file name as in ‘#line’. See Section 1.9 [Output], page 42.

42 The C Preprocessor

1.8 Miscellaneous Preprocessor Commands

This section describes three additional preprocessor commands. They are not very useful, but

are mentioned for completeness.

The null command consists of a ‘#’ followed by a Newline, with only whitespace (including

comments) in between. A null command is understood as a preprocessor command but has no

effect on the preprocessor output. The primary significance of the existence of the null command

is that an input line consisting of just a ‘#’ will produce no output, rather than a line of output

containing just a ‘#’. Supposedly some old C programs contain such lines.

The ANSI standard specifies that the ‘#pragma’ command has an arbitrary, implementation-

defined effect. In the GNU C preprocessor, ‘#pragma’ commands are ignored, except for ‘#pragma

once’ (see Section 1.3.4 [Once-Only], page 7).

The ‘#ident’ command is supported for compatibility with certain other systems. It is followed

by a line of text. On some systems, the text is copied into a special place in the object file; on

most systems, the text is ignored and this command has no effect. Typically ‘#ident’ is only used

in header files supplied with those systems where it is meaningful.

1.9 C Preprocessor Output

The output from the C preprocessor looks much like the input, except that all preprocessor

command lines have been replaced with blank lines and all comments with spaces. Whitespace

within a line is not altered; however, a space is inserted after the expansions of most macro calls.

Source file name and line number information is conveyed by lines of the form

linenum filename flags

which are inserted as needed into the middle of the input (but never within a string or character

constant). Such a line means that the following line originated in file filename at line linenum.

After the file name comes zero or more flags, which are ‘1’, ‘2’ or ‘3’. If there are multiple flags,

spaces separate them. Here is what the flags mean:

Chapter 1: The C Preprocessor 43

‘1’ This indicates the start of a new file.

‘2’ This indicates returning to a file (after having included another file).

‘3’ This indicates that the following text comes from a system header file, so certain

warnings should be suppressed.

1.10 Invoking the C Preprocessor

Most often when you use the C preprocessor you will not have to invoke it explicitly: the C

compiler will do so automatically. However, the preprocessor is sometimes useful individually.

The C preprocessor expects two file names as arguments, infile and outfile. The preprocessor

reads infile together with any other files it specifies with ‘#include’. All the output generated by

the combined input files is written in outfile.

Either infile or outfile may be ‘-’, which as infile means to read from standard input and as

outfile means to write to standard output. Also, if outfile or both file names are omitted, the

standard output and standard input are used for the omitted file names.

Here is a table of command options accepted by the C preprocessor. These options can also be

given when compiling a C program; they are passed along automatically to the preprocessor when

it is invoked by the compiler.

‘-P’ Inhibit generation of ‘#’-lines with line-number information in the output from the

preprocessor (see Section 1.9 [Output], page 42). This might be useful when running

the preprocessor on something that is not C code and will be sent to a program which

might be confused by the ‘#’-lines.

‘-C’ Do not discard comments: pass them through to the output file. Comments appearing

in arguments of a macro call will be copied to the output before the expansion of the

macro call.

‘-traditional’

Try to imitate the behavior of old-fashioned C, as opposed to ANSI C.

• Traditional macro expansion pays no attention to singlequote or doublequote char-

acters; macro argument symbols are replaced by the argument values even when

they appear within apparent string or character constants.

• Traditionally, it is permissable for a macro expansion to end in the middle of a

string or character constant. The constant continues into the text surrounding the

macro call.

44 The C Preprocessor

• However, traditionally the end of the line terminates a string or character constant,

with no error.

• In traditional C, a comment is equivalent to no text at all. (In ANSI C, a comment

counts as whitespace.)

• Traditional C does not have the concept of a “preprocessing number”. It considers

‘1.0e+4’ to be three tokens: ‘1.0e’, ‘+’, and ‘4’.

• A macro is not suppressed within its own definition, in traditional C. Thus, any

macro that is used recursively inevitably causes an error.

• The character ‘#’ has no special meaning within a macro definition in traditional

C.

• In traditional C, the text at the end of a macro expansion can run together with

the text after the macro call, to produce a single token. (This is impossible in

ANSI C.)

• Traditionally, ‘\’ inside a macro argument suppresses the syntactic significance of

the following character.

‘-trigraphs’

Process ANSI standard trigraph sequences. These are three-character sequences, all

starting with ‘??’, that are defined by ANSI C to stand for single characters. For

example, ‘??/’ stands for ‘\’, so ‘’??/n’’ is a character constant for a newline. Strictly

speaking, the GNU C preprocessor does not support all programs in ANSI Standard C

unless ‘-trigraphs’ is used, but if you ever notice the difference it will be with relief.

You don’t want to know any more about trigraphs.

‘-pedantic’

Issue warnings required by the ANSI C standard in certain cases such as when text

other than a comment follows ‘#else’ or ‘#endif’.

‘-pedantic-errors’

Like ‘-pedantic’, except that errors are produced rather than warnings.

‘-Wtrigraphs’

Warn if any trigraphs are encountered (assuming they are enabled).

‘-Wcomment’

Warn whenever a comment-start sequence ‘/*’ appears in a comment.

‘-Wall’ Requests both ‘-Wtrigraphs’ and ‘-Wcomment’ (but not ‘-Wtraditional’).

‘-Wtraditional’

Warn about certain constructs that behave differently in traditional and ANSI C.

‘-I directory ’

Add the directory directory to the end of the list of directories to be searched for header

files (see Section 1.3.2 [Include Syntax], page 4). This can be used to override a system

Chapter 1: The C Preprocessor 45

header file, substituting your own version, since these directories are searched before

the system header file directories. If you use more than one ‘-I’ option, the directories

are scanned in left-to-right order; the standard system directories come after.

‘-I-’ Any directories specified with ‘-I’ options before the ‘-I-’ option are searched only for

the case of ‘#include "file"’; they are not searched for ‘#include <file>’.

If additional directories are specified with ‘-I’ options after the ‘-I-’, these directories

are searched for all ‘#include’ commands.

In addition, the ‘-I-’ option inhibits the use of the current directory as the first search

directory for ‘#include "file"’. Therefore, the current directory is searched only if it

is requested explicitly with ‘-I.’. Specifying both ‘-I-’ and ‘-I.’ allows you to control

precisely which directories are searched before the current one and which are searched

after.

‘-nostdinc’

Do not search the standard system directories for header files. Only the directories you

have specified with ‘-I’ options (and the current directory, if appropriate) are searched.

‘-nostdinc++’

Do not search for header files in the C++-specific standard directories, but do still search

the other standard directories. (This option is used when building ‘libg++’.)

‘-D name’ Predefine name as a macro, with definition ‘1’.

‘-D name=definition’

Predefine name as a macro, with definition definition. There are no restrictions on the

contents of definition, but if you are invoking the preprocessor from a shell or shell-like

program you may need to use the shell’s quoting syntax to protect characters such as

spaces that have a meaning in the shell syntax. If you use more than one ‘-D’ for the

same name, the rightmost definition takes effect.

‘-U name’ Do not predefine name. If both ‘-U’ and ‘-D’ are specified for one name, the ‘-U’ beats

the ‘-D’ and the name is not predefined.

‘-A predicate(answer)’

Make an assertion with the predicate predicate and answer answer. See Section 1.6.5

[Assertions], page 38.

You can use ‘-A-’ to disable all predefined assertions; it also undefines all predefined

macros that identify the type of target system.

‘-dM’ Instead of outputting the result of preprocessing, output a list of ‘#define’ commands

for all the macros defined during the execution of the preprocessor, including predefined

macros. This gives you a way of finding out what is predefined in your version of the

preprocessor; assuming you have no file ‘foo.h’, the command

touch foo.h; cpp -dM foo.h

will show the values of any predefined macros.

46 The C Preprocessor

‘-dD’ Like ‘-dM’ except in two respects: it does not include the predefined macros, and it

outputs both the ‘#define’ commands and the result of preprocessing. Both kinds of

output go to the standard output file.

‘-M’ Instead of outputting the result of preprocessing, output a rule suitable for make de-

scribing the dependencies of the main source file. The preprocessor outputs one make

rule containing the object file name for that source file, a colon, and the names of all

the included files. If there are many included files then the rule is split into several

lines using ‘\’-newline.

This feature is used in automatic updating of makefiles.

‘-MM’ Like ‘-M’ but mention only the files included with ‘#include "file"’. System header

files included with ‘#include <file>’ are omitted.

‘-MD’ Like ‘-M’ but the dependency information is written to files with names made by replac-

ing ‘.c’ with ‘.d’ at the end of the input file names. This is in addition to compiling

the file as specified—‘-MD’ does not inhibit ordinary compilation the way ‘-M’ does.

In Mach, you can use the utility md to merge the ‘.d’ files into a single dependency file

suitable for using with the ‘make’ command.

‘-MMD’ Like ‘-MD’ except mention only user header files, not system header files.

‘-H’ Print the name of each header file used, in addition to other normal activities.

‘-imacros file’

Process file as input, discarding the resulting output, before processing the regular input

file. Because the output generated from file is discarded, the only effect of ‘-imacros

file’ is to make the macros defined in file available for use in the main input.

‘-include file’

Process file as input, and include all the resulting output, before processing the regular

input file.

‘-lang-c’

‘-lang-c++’

‘-lang-objc’

‘-lang-objc++’

Specify the source language. ‘-lang-c++’ makes the preprocessor handle C++ comment

syntax, and includes extra default include directories for C++, and ‘-lang-objc’ enables

the Objective C ‘#import’ command. ‘-lang-c’ explicitly turns off both of these

extensions, and ‘-lang-objc++’ enables both.

These options are generated by the compiler driver gcc, but not passed from the ‘gcc’

command line.

‘-lint’ Look for commands to the program checker lint embedded in comments, and emit

them preceded by ‘#pragma lint’. For example, the comment ‘/* NOTREACHED */’

becomes ‘#pragma lint NOTREACHED’.

Chapter 1: The C Preprocessor 47

This option is available only when you call cpp directly; gcc will not pass it from its

command line.

‘-$’ Forbid the use of ‘$’ in identifiers. This is required for ANSI conformance. gcc au-

tomatically supplies this option to the preprocessor if you specify ‘-ansi’, but gcc

doesn’t recognize the ‘-$’ option itself—to use it without the other effects of ‘-ansi’,

you must call the preprocessor directly.

48 The C Preprocessor

Concept Index 49

Concept Index

(Index is nonexistent)

50 The C Preprocessor

Index of Commands, Macros and Options 51

Index of Commands, Macros and Options

(Index is nonexistent)

52 The C Preprocessor

i

Table of Contents

1 The C Preprocessor . 1

1.1 Transformations Made Globally . 1

1.2 Preprocessor Commands . 3

1.3 Header Files . 4

1.3.1 Uses of Header Files . 4

1.3.2 The ‘#include’ Command . 4

1.3.3 How ‘#include’ Works . 6

1.3.4 Once-Only Include Files . 7

1.4 Inheritance and Header Files . 8

1.5 Macros . 9

1.5.1 Simple Macros . 9

1.5.2 Macros with Arguments . 11

1.5.3 Predefined Macros . 14

1.5.3.1 Standard Predefined Macros 14

1.5.3.2 Nonstandard Predefined Macros 16

1.5.4 Stringification . 17

1.5.5 Concatenation . 19

1.5.6 Undefining Macros . 20

1.5.7 Redefining Macros . 21

1.5.8 Pitfalls and Subtleties of Macros . 22

1.5.8.1 Improperly Nested Constructs 22

1.5.8.2 Unintended Grouping of Arithmetic 23

1.5.8.3 Swallowing the Semicolon . 24

1.5.8.4 Duplication of Side Effects . 25

1.5.8.5 Self-Referential Macros . 27

1.5.8.6 Separate Expansion of Macro Arguments 28

1.5.8.7 Cascaded Use of Macros . 31

1.5.9 Newlines in Macro Arguments . 32

1.6 Conditionals . 32

1.6.1 Why Conditionals are Used . 33

1.6.2 Syntax of Conditionals . 33

1.6.2.1 The ‘#if’ Command . 33

1.6.2.2 The ‘#else’ Command . 34

1.6.2.3 The ‘#elif’ Command . 35

1.6.3 Keeping Deleted Code for Future Reference 36

1.6.4 Conditionals and Macros . 36

1.6.5 Assertions . 38

1.6.6 The ‘#error’ and ‘#warning’ Commands 40

ii The C Preprocessor

1.7 Combining Source Files . 40

1.8 Miscellaneous Preprocessor Commands . 42

1.9 C Preprocessor Output . 42

1.10 Invoking the C Preprocessor . 43

Concept Index . 49

Index of Commands, Macros and Options . 51

